Head Office - Secunda

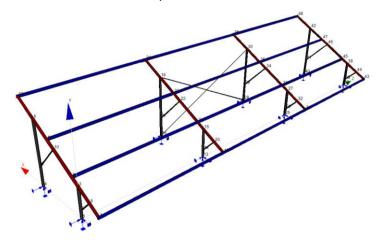
1 Louwrens Muller Str PO Box 2040 Secunda CBD Secunda 2302

BMS-HO-LH R/18

Secunda 2302

T +27 (0) 17 620 2200 F +27 (0) 17 620 2350

Design of Solar Panel Structure


Design Certificate No: COD25AA93-Rev.02 Issue date: 10 February 2025

1. Objective

On behalf of Solar Bracket Industries, Mr. G. van Rooyen requested Megchem to conduct design checks on the provided drawing and suggest modifications to enhance the structural safety. This report presents the recommended modifications and design calculations for the solar panel structure.

2. Recommendations

The following structural modifications are recommended to ensure the structure can safely withstand the loads imposed by wind and the mass of the solar panels:

- The structural drawing of the solar panel structure is updated as shown in the above figure.
- According to drawing of the solar panel structure, the wall thickness of the tubes is 2mm. However, as discussed with the client, a 3 mm wall thickness of the tubes will be used. The structural analysis was conducted on 3 mm wall thickness.
- PS-UE components should be welded all around with a 3 mm weld.
- A foundation analysis was not conducted for the structure. Therefore, a field engineer should inspect the foundation where the structure will be anchored.

3. Conclusion

Meachem has conducted design calculations to ensure the structural integrity of the system. The design calculations are attached below. The structure is designed to support a maximum of eight solar panels, each measuring 2280 mm x 1136 mm and weighing 28 kg per panel. The structural member is approved for use, provided that all conditions outlined in Section 2 are strictly adhered to. If any condition in Section 2 is not met, a certified design review request must be submitted to a Megchem Structural Engineer.

Digitally signed by Wandile Mavimbela Date: 2025.02.10 10:43:11 +02'00' W Mavimbela J Venter Assistant Civil Engineer PrTechEng

DESIGN CALCULATIONS

Client: Equipment Description:

Solar Bracket Industries Solar Structure

Our Ref. Number: Prepared By: Date:

MCP2750045 W Mavimbela 2025-02-10

Wind Load Calculation

Table 5 — Calculation procedure

1	2	3		
Description	Symbol	Reference		
Fundamental basic wind speed	$v_{b,0}$	Figure 1		
Basic wind speed	$\nu_{\rm b}$	Equation (1)		
Terrain category	A, B, C, D	Table 2		
Reference height	Ze	7.5.2.2		
Topography coefficient	$c_o(z)$	7.3.3		
Roughness/Height coefficient	$c_{\rm r}(z)$	7.3.2		
Peak wind speed	$v_p(z)$	Equations (3) and (4)		
Peak wind speed pressure	$q_p(z)$	Equation (6)		
Internal pressure coefficient	Cpi	8.3.9		
External pressure coefficient	Cpe	8.3.2 to 8.3.8		
Internal wind pressure	w_i	Equation (7)		
External wind pressure	w _e	Equation (8)		
Wind force calculated from force coefficient	F_{w}	Equations (9) and (10)		
Internal forces	$F_{\mathrm{w,i}}$	Equation (11)		
External forces	$F_{\mathrm{w,e}}$	Equation (12)		
Friction forces	F_{tr}	Equation (13)		

1. Fundamental Wind Speed ($v_{b,0}$)

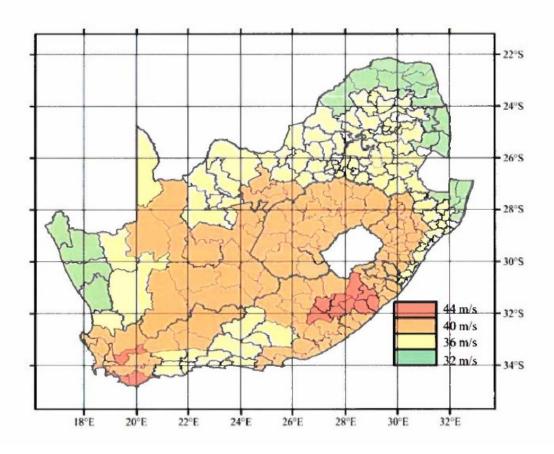


Figure 1 - Map of the fundamental value of the basic wind speed [7.2.3] Location: Bloemfountein, Free State

$$v_{b.0} := 40 \cdot \frac{m}{s}$$

2. Basic Wind Speed $(v_{h,0})$

$$c_{prob} := \left(\frac{1 - 0.2 \cdot \ln\left(-\ln\left(1 - 0.02\right)\right)}{1 - 0.2 \cdot \ln\left(-\ln\left(0.98\right)\right)}\right)^{0.5} = 1$$
 [7.2.3]

$$v_b := c_{prob} \cdot v_{b.0} = 40 \frac{m}{s}$$
 [7.2.2]

3. Topography coefficient

Assume the topograph of the site is flat. There are no hills or cliffs nearby the site. As the topograph of the site is flat, the effect of topograph may be neglected.

$$c_0 \coloneqq 1$$
 [7.3.3]

4. Terrain Category

Assume the solar panel structure location is not surrounded by building and there is low vegetation. Use terrain category B for the wind design.

$$z_{\sigma} := 300 \cdot m$$

$$z_0 = 0$$
 m

$$\alpha = 0.095$$

Height of the scaffold is 2.6 m

$$z := 2.6 \cdot m$$

$$c_r = 1.36 \left(\frac{z - z_0}{z_g - z_0} \right)^{\alpha} = 0.866$$

5. Effect of neighbouring structures

Assume the evaluation of the structures under consideration does not need to take into account the effect of the neighbouring structures .

According to SANS 10160-3, 7.3.4., the accelerated wind speed will not be considered in this design calculations because there are no neighbouring structures of significant height adjacent to the evaluated structure.

6. Closely spaced buildings and obstacles

Do not consider the wind displacement due the surrounding building.

For worst case wind loading, assume the structure is a stand alone. [7.3.5]

7. Peak wind speed

$$v_{b.z} = c_r \cdot c_0 \cdot v_b = 34.649 \frac{m}{s}$$

8. Peak wind speed pressure

Sasol Secunda altitude level is 1 395 m

$$\rho_{1395m} \coloneqq 1.115 \cdot \frac{kg}{m^3}$$

$$q_p := \frac{1}{2} \cdot \rho_{1395m} \cdot v_{b.z}^2 = 669.321 \ \textit{Pa}$$

9. Net force Coefficient

Blockage

Roof angle = 17.69 °

$$w \coloneqq 2 \cdot m$$

$$h_1 := 2.145 \cdot m$$

Area of solar panels

$$L = 2.280 \, m$$

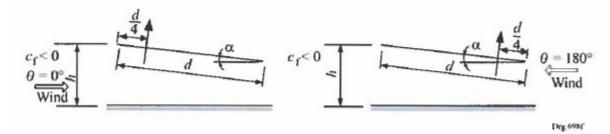
$$A_{blockage} := 8 \cdot L \cdot W = 20.721 \text{ m}^2$$

8 Solar panels on the structure

$$A_{roof} := w \cdot l = 27 \text{ m}^2$$

$$\phi := 1$$

Assume the canopy is fully blocked for a case where the client decides to store objects under the structure


At roof angle 35 degrees

Uplift wind

$$c_{f.35U} = -1.4$$

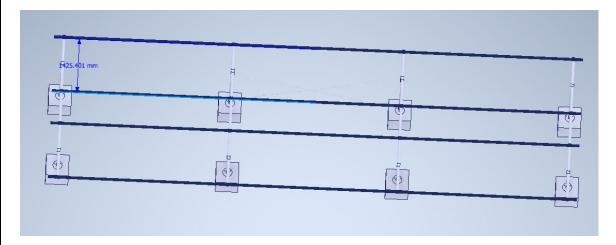
SANS 10160-3: Table 13

$$c_{f.35} < 0$$

$$d = 3.8 \, \mathbf{m}$$

$$\frac{d}{4}$$
 = 0.95 **m**

10. Wind Friction


The effect of wind friction can be ignore as there are no parallel surface to the wind.

11. Net wind pressure

$$w_{net.U} := c_{f.35U} \cdot q_p = -937.05 \ \textit{Pa}$$

Worst Case because the wind and self of the structure in the same direction

12. Loading on solar brackets

Mass per panel (provided by client)

Wind Load

Spacing := 1.425 *m*

$$UDL_W := \frac{Spacing}{2} \cdot w_{net.U} = -0.668 \frac{kN}{m}$$

Mass of solar panels

$$Mass_{Panel} := 28 \cdot kg$$

$$W = 1.136 \, \mathbf{m}$$

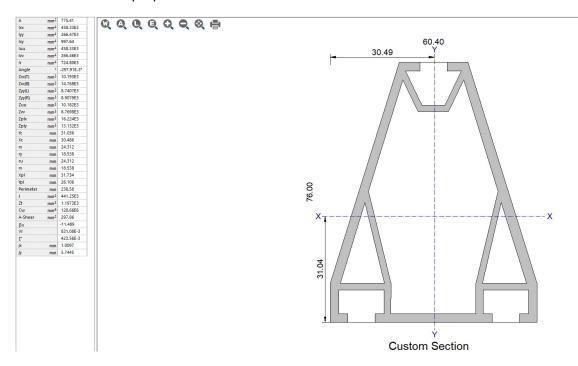
$$UDL_M := \frac{Mass_{Panel} \cdot \mathbf{g}}{W} = 0.242 \frac{\mathbf{kN}}{\mathbf{m}}$$

13. Design loads

ULS Design

$$UDL_{D.M.ULS} = 1.2 \cdot UDL_M = 0.29 \frac{kN}{m}$$

$$UDL_{D.W.ULS} := 1.6 \cdot UDL_W = -1.068 \frac{kN}{m}$$


SLS Design

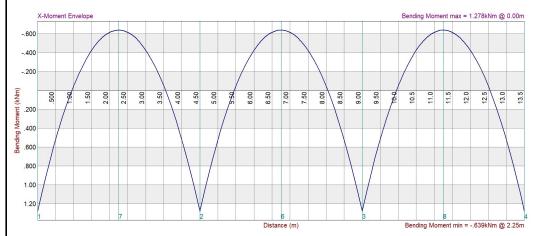
$$UDL_{D.M.SLS} = 1.1 \cdot UDL_M = 0.266 \frac{kN}{m}$$


$$UDL_{D.W.SLS} = 1 \cdot UDL_W = -0.668 \frac{kN}{m}$$

14. Prokon Results

Bracket sectional properties

Deflection



$$\delta \coloneqq 13.59 \cdot mm$$

$$\delta_a \coloneqq \frac{Span}{300} = 15 \ \mathbf{mm}$$

$$Check_1 := if(\delta < \delta_a, "Safe", "Not Safe") = "Safe"$$

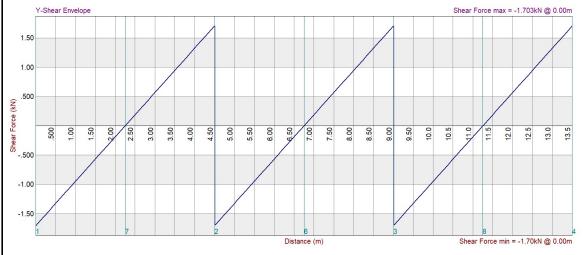
Bending Stress

 $M_u := 1.278 \cdot kN \cdot m$

 $l := 458330 \cdot mm^4$

y = 76 mm - 31.04 mm = 44.96 mm

 $\sigma := M_u \cdot \frac{y}{l} = 125.366 \text{ MPa}$


 $f_y := 214 \cdot MPa$

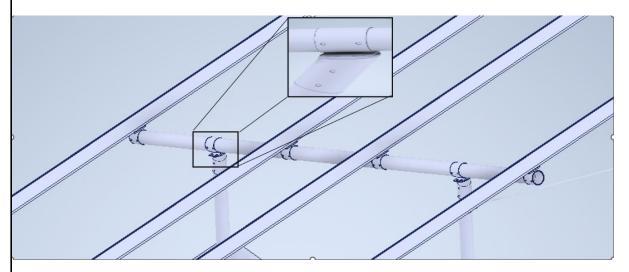
Aluminum 6063-T6

 $\sigma_a := 0.66 \cdot f_y = 141.24 \ MPa$

Check₂:= if $(\sigma < \sigma_a$, "Safe", "Not Safe") = "Safe"

Shear Stress

 $V_u := 1.703 \cdot kN$


$$A := 775.41 \cdot mm^2$$

$$\tau_{avg} \coloneqq \frac{V_u}{A} = 2.196 \text{ MPa}$$

$$\sigma_{a} := 0.66 \cdot f_{y} = 141.24 \text{ MPa}$$

$$Check_3 := if(\tau_{avg} < \sigma_a, "Safe", "Not Safe") = "Safe"$$

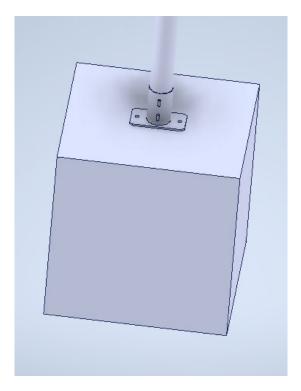
Connection

The maximum bolt hole size is 8 mm. Therefore, 6 mm bolts.

$$V_A := 3.926 \cdot kN$$

$$V_{r.PerBolt} := 11.58 \cdot kN$$

ProBolt Brochure


n := 4

Number of Bolts

$$V_r := V_{r.PerBolt} \cdot n = 46.32 \text{ kN}$$

$$Check_4 := if(V_A < V_r, "Safe", "Not Safe") = "Safe"$$

Base Plate

$$V_{u.a} := 1.298 \cdot kN$$

$$V_{r.PerBolt.2} := 11.58 \cdot kN$$

 $n_2 \coloneqq 2$

$$V_{r2} := V_{r.PerBolt} \cdot n_2 = 23.16 \text{ kN}$$

ProBolt Brochure

Number of Bolts

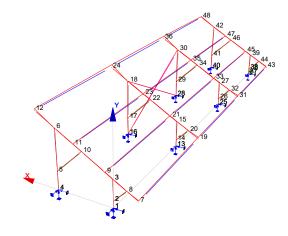
Marration

Digitally signed by Wandile Mavimbela Date: 2025.02.10 10:44:52 +02'00'

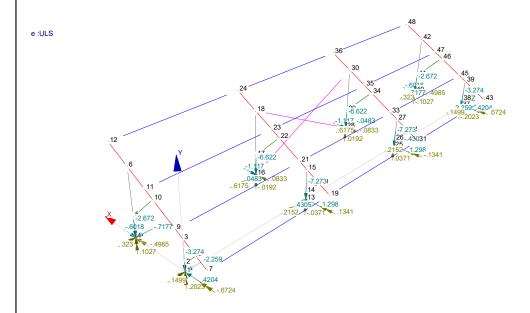
W Mavimbela Civil Engineer J Venter Civil Pr Engineer

Job Number MCP2750045 Sheet				
Job Title	SOLAR PANEL STRU	CTURE		
Client	SOLAR BRACKET INDUSTRIES			
Calcs by	W MAVIMBELA	Checked by J VENTER	Date 202	5/02/10

Solar Panel Structure

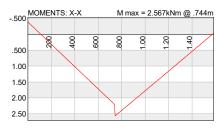

Deflections for Load Case SLS

Maximum Deflections for Load Case SLS:


X:2.02 mm at node 33

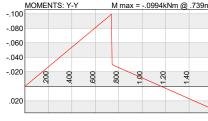
Y :5.28 mm at node 36 Z :-1.21 mm at node 41

Reactions for Load Load Case ULS

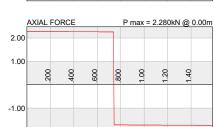

	Job Number MCP2750045 Sheet							
7	Job Title	SOLAR PANEL STRU	CTURE					
	Client	ent SOLAR BRACKET INDUSTRIES						
	Calcs by	Calcs by W MAVIMBELA Checked by J VENTER Date 2025/02/10						

OK

OK


OK

Combine Design


Combine Ver W5.2.12 Element 35-36 **Evaluate current sections** Section name RAFTER

M max = -.0994kNm @ .739m Critical load case: ULS

Section 76x3 Round hollow sections

SANS 10162-1:2011 13.8.3: a) Cross-sectional strength (Critical position = 0.792 m)

b) Overall member strength Cu U1xMux U1yMuy 2.28 2.42 .089 -- + ----- + ---- = ---- + ---- = 0.84 Cr Mrx Mry 109 3.08 3.08

c) Lateral torsional buckling strength Cu U1xMux U1yMuy 2.28 2.42 .089 -- + ----- + ---- = ---- + ---- = 0.83 Cr 116 3.08 3.08 Mrx Mry

13.4:Shear

Slenderness ratio:

Job Number MCP2750045 Sheet							
	Job Title	SOLAR PANEL STRU	CTURE				
	Client	SOLAR BRACKET INDUSTRIES					
	Calcs by	W MAVIMBELA	25/02/10				

Weld Group Shear Analysis Ver W5.2.02 - 06 Aug 2024

Title: Default Connection Created on: 2025-02-10 10:09:38

Design Code : SANS 10162-1:2011

Analysis : Non-Linear Electrode fu : 290 MPa

Parent Metal fu : 241 MPa

Parent Metal fy: 214 MPa

Since unit values are used for the length and size of the weld, the capacity of this layout is given in MPa

The capacity, Vr is the lesser of Vr1 & Vr2:

$$V_{rl} = 0.67 \cdot \phi_{w} \cdot A_{m} \cdot f_{u}$$

$$= 0.67 \times 0.67 \times 1 \times 241$$

= 108.185 MPa

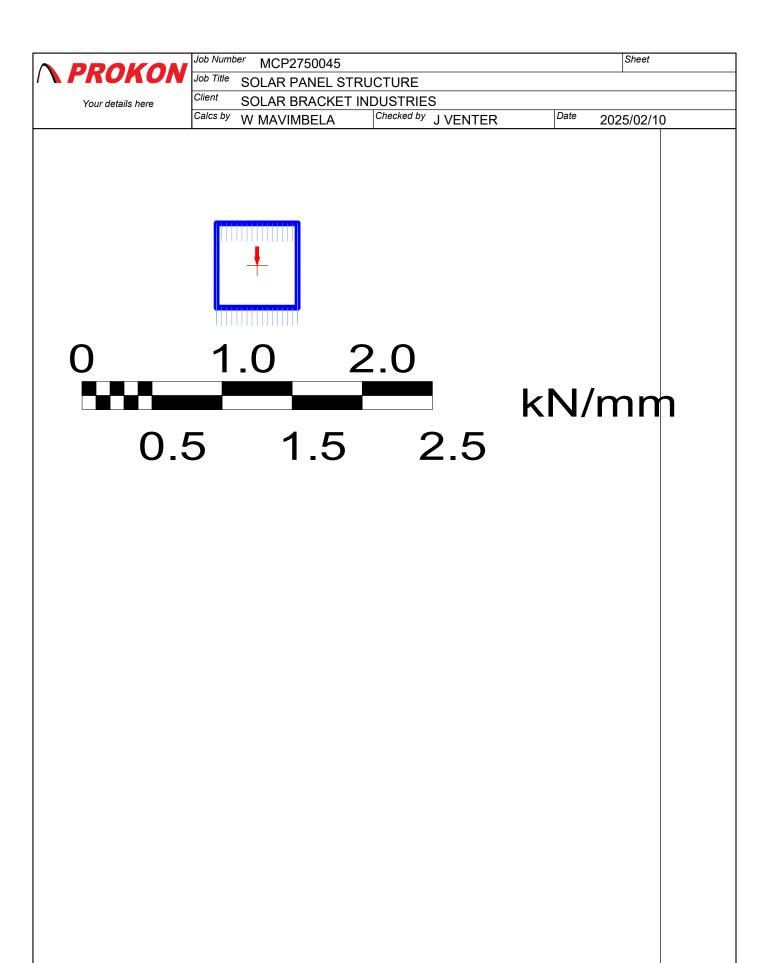
$$V_{r2} = 0.67 \cdot \phi_w \cdot A_w \cdot X_u$$

$$= 0.67 \times 0.67 \times 0.707 \times 290$$

= 92.038 MPa

$$V_r = V_{r2} = 92.038 \text{ MPa}$$

The capacity = 0.276 kN/mm of a 3 mm weld


The resistance of the Weld Group is: 50 kN

The applied ULS force is: 5 kN

Weld is safe

Weld forces at ultimate load

13.13.2.2

Combine Design

Job Num	MCP2750045	Sheet
Job Title	SOLAR PANEL STRUCTURE	
Client	SOLAR BRACKET INDUSTRIES	

Checked by J VENTER

Combine Ver W5.2.12 Element 17-22

W MAVIMBELA

M max = -.0200kNm @ 0.00m

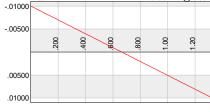

Calcs by

Evaluate current sections

Date

2025/02/10

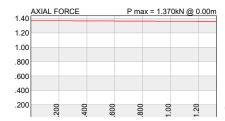
Section name BRACING



Lx Eff = 1.128 mW1x = 1.00Ly Eff = 1.128 m W1y = 0.40Le Eff = 1.327 m W2 = 2.35Fy = 214 MPa Fu = 241 MPa Tension area factor (Ane/Ag) = 1.00 Section class: 1

M max = -.0100kNm @ 0.00m Critical load case: ULS

Section 32x3


Round hollow sections

SANS 10162-1:2011 13.8.3:

a) Cross-sectional strength (Critical position = 0.000 m) Cu Mux Muy 1.37 .021 .010 -- + --- + --- = ---- + ---- = 0.13

36.2 .347 .347 Mrx Mry

b) Overall member strength

Cu U1xMux U1yMuy 1.37 .020 .010 -- + ---- + ---- = --- + --- = 0.17 Cr Mrx Mry 15.8 .347 .347

c) Lateral torsional buckling strength

Cu U1xMux U1yMuy 1.37 .020 .010 + ----- + ---- = ---- + ---- = 0.16 Cr Mry 19.3 .347 .347 Mrx

13.4:Shear

Vux < Vrx 0.0 < 13.3 Vuy < Vry 0.0 < 13.3 OK OK

OK

OK

OK

Slenderness ratio:

Lx/rx = 106Ly/ry = 106 OK OK

Job Number MCP2750045

Job Title SOLAR PANEL STRUCTURE Client

SOLAR BRACKET INDUSTRIES Calcs by W MAVIMBELA

Checked by J VENTER

Date

2025/02/10

Sheet


Strut Ver W5.2.14 - 11 December 2024

Task: Task 1

Design parameters					
Kv factor		0.85			
Kx factor	0.85				
Ky factor	1.00				
Kz factor		1.00			
Ane/Ag		1.00			
Fy	MPa	214.00			
Fu	MPa	241.00			

Maximum L/r ratios					
Load case Compression Tension					
ULS	200	300			
SLS	200	300			

Element	Length (m)	Load case	L/R	Critical Axis	Section designation	P (kN)	Pr (kN)	Result
16-17	0.664	ULS	83	Y	76.2x3.0	-6.6	-127.2	ОК
17-18	1.481	ULS	83	Υ	76.2x3.0	-7.6	-127.2	OK
Group mass = 11.6 kg								

